[1] A critical analysis of the conformable derivative, Nonlinear Dyn (2019) 95:3063–3073. https://doi.org/10.1007/s11071-018-04741-5.
[2] WHY FRACTIONAL DERIVATIVES WITH NONSINGULAR KERNELS SHOULD NOT BE USED, Fract. Calc. Appl. Anal., Vol. 23, No 3 (2020), pp. 610{634, DOI: 10.1515/fca-2020-0032. arXiv:2006.15237v1 [math.CA] 26 Jun 2020.
[3] On the mistake in defining fractional derivative using a non-singular kernel, arXiv:1912.04422v3 [math.CA] 29 Jan 2020.
[4] On chain rule for fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, v. 30, n. 1-3, p. 1-4, 2016. https://doi.org/10.1016/j.cnsns.2015.06.007.
[5] Diethelm, K. Monotonicity of Functions and Sign Changes of Their Caputo Derivatives. FCAA 19, 561–566 (2016). https://doi.org/10.1515/fca-2016-0029.
[6] Tarasov, V. E. (2018). No nonlocality. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 62, 157–163. doi:10.1016/j.cnsns.2018.02.019
[7] Du, B., Chen, Y., Wei, Y., Cheng, S. e Wang, Y. (2016). Discussion on extreme points with fractional order derivatives. Proceedings of the 35th Chinese Control Conference. doi:10.1109/chicc.2016.7555022